A Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions

A. Shidfar, and Ali Zakeri

Abstract

This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, a numerical example will be presented.

Keywords: Inverse heat conduction, Ill-posed problem, Finite difference method

1. Statement of the problem

This section deals with a linear heat equation

$$
\begin{align*}
\frac{\partial u(x, t)}{\partial t}=a(t) \frac{\partial^{2} u(x, t)}{\partial x^{2}}-q(t) u(x, t), \tag{1}\\
D=\{(x, t) \mid 0<x<1,0<t<T\},
\end{align*}
$$

with boundary conditions

$$
\begin{equation*}
u(0, t)=g(t), \quad 0 \leq t \leq T, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
u(1, t)=h(t), \quad 0 \leq t \leq T, \tag{3}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad 0 \leq x \leq 1, \tag{4}
\end{equation*}
$$

where T is a given positive constant number, $q(t), a(t)$ and $g(t)$ are known functions on $[0, T]$, and $h(t), u_{0}(x)$ and $u(x, t)$ are unknown functions. To solve the above problem, we use the following extra conditions

$$
\begin{align*}
& \frac{\partial u(0, t)}{\partial t}=0, \quad 0 \leq t \leq T, \tag{5}\\
& u(x, T)=f(x), \quad 0 \leq x \leq 1,
\end{align*}
$$

integrable positive function in $[0, \mathrm{~T}]$, and $\mathrm{f}(\mathrm{x})$ be an analytical function for any $0<x<1$, then there exist a unique weak solution $u \in L^{2}\left(0, T ; \boldsymbol{H}^{l}([0,1])\right)$ and $H \delta l e r$ continuous function $\mathrm{h}(\mathrm{t})$, for the problem (1)(6).

Proof In order to prove this theorem, let us consider the transformation

$$
v(x, t)=u(x, t) \exp \left\{\int_{0}^{t} q(\tau) d \tau\right\} .
$$

By using this transformation, the problem (1)-(2) and (5)-(6) becomes

$$
\begin{aligned}
\frac{\partial v(x, t)}{\partial t} & =a(t) \frac{\partial^{2} v(x, t)}{\partial x^{2}}-q(t) v(x, t), \\
D & =\{(x, t) \mid 0<x<1,0<t<T\}, \\
v(x, T) & =u_{M}(x) \exp \left\{-\int_{0}^{T} q(\tau) d \tau\right\} \\
& =f_{1}(x), \quad 0<x<1, \\
v(0, t) & =g(t) \exp \left\{-\int_{0}^{t} q(\tau) d \tau\right\} \\
& =g_{1}(t), \quad 0<t<T, \\
\frac{\partial v(0, t)}{\partial x} & =0, \quad 0 \leq t \leq T .
\end{aligned}
$$

Because, $q(t)$ is a positive function and integrable in it's domain, if g and $f(x)$ may be satisfied in the assumptions of theorem 1 , then g_{1} and $f_{1}(x)$ satisfying in these assumptions, too.
Consequently by using [$1,4,6,8,9]$ the proof of this statement will be completed. In continuation, assume that $M \in \quad, \Delta t_{M}=T / M$, and $t_{i}=i \Delta t_{M}$.
Also, we use $\hat{u}_{i}(x)$ instead of the approximate $u\left(x, i \Delta t_{M}\right)$, and $a_{i}=a\left(t_{i}\right)$ for any $0 \leq i \leq M$. Obviously, we have $u_{M}(x)=f(x)$. Now, apply the semi-implicit finite difference method in the form
$\hat{u}_{i+1}(x)=\hat{u}_{i}(x)+\left(\theta \frac{\partial \hat{u}\left(x, t_{i}\right)}{\partial t}+\theta^{\prime} \frac{\partial \hat{u}\left(x, t_{i+1}\right)}{\partial t}\right) \Delta t_{M}$,
where $\theta>0$ and $\theta^{\prime}=1-\theta$. Then, by substituting (1)(6) into (7) we drive the following ordinary differential equations system
$\frac{d^{2} \hat{\mathbf{u}}(x)}{d x^{2}}=-\lambda^{2} \mathbf{A} \hat{\mathbf{u}}(x)+\lambda^{2} \mathbf{f}(x)$,
where $\lambda=\left(\Delta t_{M}\right)^{-\frac{1}{2}}$ and $\mathbf{A}=\mathbf{B}^{-1} \mathbf{C}$, such that

$$
\begin{gathered}
\hat{\mathbf{u}}(x)=\left[\hat{u}_{0}(x), \mathrm{K}, \hat{u}_{M-1}(x)\right]_{1 \times M}^{T}, \\
\mathbf{f}(x)=\left[9, \mathcal{K}_{M-1} 0, f_{M}\right]_{1 \times M}^{T}, \\
f_{M}=\left(1+\theta^{\prime} q \Delta t_{M}\right) u_{M}(x)-\Delta t_{M} \theta^{\prime} a_{M} u_{M}^{\prime \prime}(x),
\end{gathered}
$$

$$
\mathbf{C}=\left[C_{i j}\right]_{M \times M}
$$

where

$$
\left[C_{i j}\right]_{M \times M}=\left\{\begin{array}{cc}
1-\theta q_{i-1} \Delta t_{M} & j=i \\
-\left(1-\theta^{\prime} q_{i} \Delta t_{M}\right) & j=i+1 \\
0 & \text { else where }
\end{array}\right.
$$

and

$$
\mathbf{B}=\left(\begin{array}{cccccc}
\theta a_{0} & \theta^{\prime} a_{1} & 0 & 0 & \mathrm{~L} & 0 \\
0 & \theta a_{1} & \theta^{\prime} a_{2} & 0 & \mathrm{~L} & 0 \\
0 & 0 & \theta a_{2} & \theta^{\prime} a_{3} & \mathrm{~L} & 0 \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{O} & \mathrm{M} \\
0 & 0 & \mathrm{~L} & \mathrm{~L} & \theta a_{M-2} & \theta^{\prime} a_{M-1} \\
0 & 0 & 0 & \mathrm{~L} & 0 & \theta a_{M-1}
\end{array}\right) .
$$

Consequently, we have

$$
\hat{\mathbf{u}}(0)=\left[g_{0}, \mathrm{~K}, g_{M-1}\right]^{T}
$$

and

$$
\hat{\mathbf{u}}^{\prime}(0)=[0, \mathrm{~L}, 0]^{T}
$$

Now, let us $f(x)=0$, then, for the solution of the equations system (8) may be in the form

$$
\begin{equation*}
\hat{\mathbf{u}}(x)=\cos (\lambda S(x))\left(\mathbf{f}_{0}(x)+\lambda^{-1} \mathbf{f}_{1}(x)+\mathrm{L}\right) \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{\mathbf{u}}(x)=\sin (\lambda S(x))\left(\mathbf{f}_{0}(x)+\lambda^{-1} \mathbf{f}_{1}(x)+\mathrm{L}\right), \tag{10}
\end{equation*}
$$

Where $S(x)$ is an unknown function and $\mathbf{f}_{0}(x), \mathbf{f}_{1}(x), \mathrm{L}$, are unknown vector-functions. By substituting (9) and (10) into the ordinary differential equations system (8), cancel the cosine or sine term and simplifying the produced results, then we obtain a recurrent system of equations
$\left(\mathbf{A}-S^{\prime 2}(x) \mathbf{I}\right) \mathbf{f}_{0}(x)=\mathbf{0}$,
$\left(\mathbf{A}-S^{\prime 2}(x) \mathbf{I}\right) \mathbf{f}_{1}(x)=\mathbf{f}_{0}(x) S^{\prime \prime}(x)+2 \mathbf{f}_{0}^{\prime}(x) S^{\prime}(x)$,

$$
\begin{align*}
& \quad\left(\mathbf{A}-S^{\prime 2}(x) \mathbf{I}\right) \mathbf{f}_{k}(x)=\mathbf{f}_{k-1}(x) S^{\prime \prime}(x) \\
& +2 \mathbf{f}_{k-1}^{\prime}(x) S^{\prime}(x)+\mathbf{f}_{k-2}^{\prime \prime}(x), \quad k \geq 2 . \tag{13}
\end{align*}
$$

If $a(t)$ is a monotone function, then the characteristic equation (8), has not turning points for any $x \in[0,1]$ ([5]).

Then \mathbf{A} has M unequal eigenvalues and M linear independent eigenvectors corresponding to eigenvalues of matrix \mathbf{A}.
By using (11)-(13) we derive $2 M$ independent solutions for (8). It follows from (11) that $S^{2}(x)$ is an eigenvalue, and $\mathbf{f}_{0}(x)$ is an eigenvector of \mathbf{A}. Let $\left\{\mathbf{e}_{0}(x), \mathrm{K}, \mathbf{e}_{M-1}(x)\right\}$ be a base of eigenvectors. Then, we derive

$$
\begin{gathered}
S_{j}(x)=\frac{x \sqrt{1-\theta q_{j} \Delta t_{M}}}{\sqrt{\theta a_{j}}}, \quad 0 \leq j \leq M-1, \\
\mathbf{f}_{i}^{(j)}(x)=\alpha_{i, j}(x) \mathbf{e}_{j}(x), \quad i \geq 0,0 \leq j \leq M-1,
\end{gathered}
$$

where

$$
\alpha_{0, j}(x)=\sqrt[4]{a_{j}(x)}, \quad 0 \leq j \leq M-1
$$

and

$$
\begin{aligned}
\alpha_{i, j}(x) & =-\frac{\alpha_{0, j}(x)}{2} \int_{0}^{x} \frac{\alpha_{(i-1), j}^{\prime \prime}(s)}{\alpha_{0, j}(s)} d s=0, \\
0 & \leq j \leq M-1, \quad i>1
\end{aligned}
$$

Then, for finding $\hat{u}_{i}(x)$ for any $i=0,1, \mathrm{~K}, M-1$, setting

$$
\begin{equation*}
\hat{\mathbf{u}}(x)=\sum_{i=0}^{M-1} C_{i}^{(1)} \hat{\mathbf{u}}_{i}^{(1)}(x)+\sum_{i=0}^{M-1} C_{i}^{(2)} \hat{\mathbf{u}}_{i}^{(2)}(x) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\mathbf{u}}_{i}^{(1)}(x)=\sin \left(\frac{x \sqrt{1-\theta q_{i} \Delta t_{M}}}{\sqrt{\theta a_{i} \Delta t_{M}}}\right) \mathbf{f}_{0}^{(i)}(x) \tag{15}
\end{equation*}
$$

$$
\begin{align*}
\hat{\mathbf{u}}_{i}^{(1)}(x) & =\cos \left(\frac{x \sqrt{1-\theta q_{i} \Delta t_{M}}}{\sqrt{\theta a_{i} \Delta t_{M}}}\right) \mathbf{f}_{0}^{(i)}(x), \tag{16}\\
i & =0, \mathrm{~K}, M-1,
\end{align*}
$$

where, $\quad v_{i}^{(j)}(x) \quad$ for any $i=0, \mathrm{~K}, M-1 \quad$ and $j=1,2$ are unknown functions and will be found from (8) and (14)-(16). Now, for each $n \in$ and $0 \leq i \leq M-1$, if $\frac{1-\theta q_{i} \Delta t_{M}}{a_{i} \theta \Delta t_{M}} \neq(n \pi)^{2}$, then the solution (11) is unique ([10]). The above result may be summarized in the following statement.
Theorem 2 If $f(x)$ be the analytical function, and for each $n \in \quad$ and $\quad 0 \leq i \leq M-1$, if $\frac{1-\theta q_{i} \Delta t_{M}}{a_{i} \theta \Delta t_{M}} \neq(n \pi)^{2}$, then the equations system (8) has a unique solution.
Proof See the analysis preceding the above theorem statement.
In the next section we consider the one example, and show that, choosing an appropriate θ produce convergent solution for problem (1)-(4).

3. Numerical Example

This section will present a simulated case to evaluate the capability of the proposed robust input estimation scheme.

Example Assume that

$$
\begin{gathered}
T=1, \quad q(t)=2 t \\
f(x)=e^{-1} \cosh (2) \cos (x), \quad 0 \leq x \leq 1 \\
a(t)=3-2 t, \quad 0 \leq t \leq 1 \\
g(t)=e^{-t^{2}} \cosh \left(t^{2}-3 t\right), \quad 0 \leq t \leq 1
\end{gathered}
$$

Clearly, $f(x)$ and $g(t)$ satisfy in assumptions of theorems 1 and 2.
Therefore, there is a unique solution for this sample problem. Obviously, $u(x, t)=\cosh \left(t^{2}-3 t\right) \cos x$
for any $0 \leq x \leq 1, \quad 0 \leq t \leq T$ and the above assumptions, satisfies in problem (1)-(6). Now, we use the above numerical method to this problem.
For $x=1, \Delta t_{M}=0.1, \theta=10$, the result are given in the table 1.
One can see from the data in the table 1 the relation errors generated through the computation show that the approximate and the exact solutions are vanished.
In the fifth column, the produced errors of area, between u and \hat{u} in the interval [0,1], no more than five percentage, although, the relative errors in $\hat{u_{i}}(1)$, for some of $0 \leq i \leq M$ may be 23%, but the maximum error in area region of between u and \hat{u} in their domain no more than 0.03 (3.7\% relative error). Consequently this technique can be applied for the similar inverse problems.

Table. 1. Exact and Estimate of the Temperature in $\mathbf{x}=\mathbf{1}$ with $\Delta t_{M}=0.1, \theta=10$.

t	$u(1, t)$	$\hat{u}(1, t)$	relative error	$\left\\|u\left(x, t_{i}\right)\right\\|_{L[0,1]}$	$\left\\|u\left(x, t_{i}\right)-\hat{u}\left(x, t_{i}\right)\right\\|_{L[0,1]}$
0	0.540302	0.438671	$\mathbf{1 8 . 8} \%$	0.806089	0.035381
0.1	0.563181	0.428510	$\mathbf{2 3 . 9} \%$	0.830280	0.04682
0.2	0.627258	0.482832	$\mathbf{2 3 . 0} \%$	0.926704	0.05019
0.3	0.727453	0.591342	$\mathbf{1 8 . 7} \%$	1.085646	0.04729
0.4	0.859802	0.745534	$\mathbf{1 3 . 2} \%$	1.299360	0.03970
0.5	1.020319	0.936711	$\mathbf{8 . 1 ~ \%}$	1.560007	0.02904
0.6	1.204232	1.154731	$\mathbf{4 . 1 ~ \%}$	1.858290	0.01718
0.7	1.405515	1.387395	$\mathbf{1 . 2} \%$	2.182683	0.00627
0.8	1.616714	1.620597	$\mathbf{0 . 2 4 \%}$	2.519261	0.00137
0.9	1.829042	1.839611	$\mathbf{0 . 5 7 \%}$	2.852268	0.00370

4. Conclusion

In this paper we shown that, if we choose the appropriate of parameter θ such that, the estimated solution of this problem well-posed, then we can to tend Δt_{M} to zero and we derive the convergency and stability of this problem.
In order to, reduce of effect measurements error in the final time and boundary, we use the source term $q(t) u(x, t)$ in the problem (1)-(6).

References

[1] Beck, J.V., Blackwell, B., Inverse Heat Conduction, Ill-posed Problems, Wiley Inter science New York, 1985.
[2] Beck, J.V., Blackwell, B., Haji-Sheikh, A., "Comparison of Some Inverse Heat Conduction Methods Using Experimental Data", International Journal of Heat and Mass Transfer, Vol. 39, No. 17, 1996, pp. 3649-3657.
[3] Burggraf, O.R., "An Exact Solution of the Inverse Problem in Heat Conduction Theory and
[4] Heinz, W., Engl, M.H., Andreas, N., Regularization of Inverse Problems, Kluwer Academic Publication, 1996.
[5] Shidfar, A., Zakeri, A., "Asymptotic Solution for an Inverse Parabolic Problem", Mathematica Balkanica, Vol. 18, 2004, pp. 475-483.
[6] Shidfar, A., Zakeri A., "A Numerical Technique for Backward Inverse Heat Conduction Problems in One Dimensional space", Journal of Applied Mathematics and Computation, article in press.
[7] Shih-Yu Shen, "A Numerical Study of Inverse Heat Conduction Problems", Computers and Mathematics with Applications, Vol. 38, 1999, pp. 173-188.
[8] Cannon, J.R., The One-Dimensional Heat Equation, Addison-Wesley New York, 1984.
[9] Colton, D., Analytic Theory of Partial Differential Equations, Pitman, Boston, 1980.
[10] Atkinson, E.K., An Introduction to Numerical Analysis, New York, 1964.

